Data Notes Series

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physics 40 Series Notes

4 Kinematics in Two Dimensions 5 4.1 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.2 Two-Dimensional Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.3 Projectile Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Notes on Fourier Series

A function or a real variable f is said to be periodic with period P if f(x+ P ) = f(x) holds for all x. Hence, if we know the values of f on an interval of length P , we know its values everywhere. If f is a function defined on an interval [a, b), we can extend f to a function defined for all x which is periodic of period b− a. We simply define f(x) to be f(x+ n(b− a)), where n is the integer ...

متن کامل

Math 436 Notes: Series

Definition 1.1 (Series). Fix a group G and subgroups H ≤ K ≤ G. An ascending series connecting H and K, Ĝ∗ ↑ K H is a sequence of groups of the form: H = G0 E G1 E · · · E Gn−1 E Gn = K. Note it is only assumed that Gi is normal in Gi+1 and not neccesarily in G. If Gi E G for all i we call Ĝ∗ ↑ K H a normal series. A descending series connecting K and H, Ĝ∗ ↓ K H is a sequence of groups of the ...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Notes on Chebyshev Series and Computer Algebra

A typical computer algebra system (CAS) represents formulas by (what amounts to) trees. By approximating a more general function as a univariate polynomial, it can be represented as an array of coefficients. Another common representation is as a set of values of the function at specified points. In either case, one can compute in this realm of “functions” further by combining such arrays. By ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Addiction

سال: 2016

ISSN: 0965-2140

DOI: 10.1111/add.13241